Skip to main content
Log in

Correlation Between the Adsorption and the Nanotribological Performance of Fatty Acid-Based Organic Friction Modifiers on Stainless Steel

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

Surface adsorption of amphiphilic molecules is a vital mechanism of boundary lubrication on stainless steel surfaces. The self-assembly of four fatty acid-based organic friction modifiers in two alkane solvents and their adsorption onto stainless steel surfaces was investigated using Dynamic Light Scattering and Quartz Crystal Balance with Dissipation, respectively. These properties were related to the friction force between a sharp tip and the steel surface measured using Lateral Force Microscopy. The molecular structures of the organic friction modifiers were chosen in order to study the effects of unsaturation and number of alkyl chains as well as the composition of the polar head groups on their assembly in solution, adsorption, and nanotribological behavior. Sorbitan monooleate and dioleate adsorb as monolayers with their alkyl chains either in the upright or tilted configuration, depending on their concentration. If large supramolecular structures were present in the solvent, i.e., for sorbitan monolaurate and glycerol monooleate, micelle adsorption and rearrangement on the surface and multilayer formation took place, respectively. A correlation between the adsorption rate constant and the coefficient of friction of the organic friction modifiers was revealed in these studies, with the coefficient of friction decreasing with an increase in the adsorption rate.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

taken from Ref. [32] at the concentration of 0.5 wt% in n-hexadecane. The error bars are occasionally smaller than the marker size, and therefore, not always visible

Similar content being viewed by others

References

  1. Braithwaite, E.R., Greene, A.B.: Critical analysis of performance of molybdenum compounds in motor vehicles. Wear 46(2), 405–432 (1978). https://doi.org/10.1016/0043-1648(78)90044-3

    Article  CAS  Google Scholar 

  2. Allen, H.S.: Molecular layers in lubrication. Discussion on lubrication. Proc. Phys. Soc. Lond. 32, 1–34 (1919).

    Article  Google Scholar 

  3. Spikes, H.: Friction modifier additives. Tribol. Lett. 60(1), 5 (2015). https://doi.org/10.1007/s11249-015-0589-z

    Article  Google Scholar 

  4. Schwartz, D.K.: Mechanisms and kinetics of self-assembled monolayer formation. Annu. Rev. Phys. Chem. 52, 107–137 (2001). https://doi.org/10.1146/annurev.physchem.52.1.107

    Article  CAS  Google Scholar 

  5. Hardy, W.B.: Boundary lubrication—the paraffin series. Proc. R. Soc. Lond. A 100(707), 550–574 (1922). https://doi.org/10.1098/rspa.1922.0017

    Article  CAS  Google Scholar 

  6. Jahanmir, S., Beltzer, M.: An adsorption model for friction in boundary lubrication. ASLE Trans. 29, 423–430 (1986)

    Article  CAS  Google Scholar 

  7. Bowden, F.P., Tabor, D.: The Friction and Lubrication of Solids. Clarendon Press, Oxford (1971)

    Google Scholar 

  8. Cameron, A., Day, R.S., Sharma, J.P., Smith, A.J.: Studies in interaction of additive and base stock. Asle Trans. 19(3), 195–200 (1976)

    Article  CAS  Google Scholar 

  9. Jahanmir, S.: Chain-length effects in boundary lubrication. Wear 102(4), 331–349 (1985). https://doi.org/10.1016/0043-1648(85)90176-0

    Article  CAS  Google Scholar 

  10. Askwith, T.C., Cameron, A., Crouch, R.F.: Chain length of additives in relation to lubricants in thin film and boundary lubrication. Proc. R. Soc. Lond. A 291(1427), 500–519 (1966). https://doi.org/10.1098/rspa.1966.0111

    Article  CAS  Google Scholar 

  11. Wells, H.M., Southcombe, J.E.: The theory and practice of lubrication: the "Germ" process. J. Soc. Chem. Lond. 39, 51T–60T (1920)

    Article  Google Scholar 

  12. Daniel, S.G.: The adsorption on metal surfaces of long chain polar compounds from hydrocarbon solutions. Trans. Faraday Soc. 47(12), 1345–1359 (1951). https://doi.org/10.1039/tf9514701345

    Article  CAS  Google Scholar 

  13. Greenhill, E.B.: The adsorption of long chain polar compounds from solution on metal surfaces. Trans. Faraday Soc. 45(7), 625–631 (1949). https://doi.org/10.1039/tf9494500625

    Article  CAS  Google Scholar 

  14. Ratoi, M., Anghel, V., Bovington, C., Spikes, H.A.: Mechanisms of oiliness additives. Tribol. Int. 33(3–4), 241–247 (2000). https://doi.org/10.1016/S0301-679x(00)00037-2

    Article  CAS  Google Scholar 

  15. Block, A., Simms, B.B.: Desorption and exchange of adsorbed octadecylamine and stearic acid on steel and glass. J. Colloid Interface Sci. 25(4), 514–518 (1967). https://doi.org/10.1016/0021-9797(67)90062-8

    Article  CAS  Google Scholar 

  16. Cook, E.L., Hackerman, N.: Adsorption of polar organic compounds on steel. J. Phys. Colloid Chem. 55(4), 549–557 (1951). https://doi.org/10.1021/j150487a010

    Article  CAS  Google Scholar 

  17. Simic, R., Kalin, M.: Adsorption mechanisms for fatty acids on DLC and steel studied by AFM and tribological experiments. Appl. Surf. Sci. 283, 460–470 (2013). https://doi.org/10.1016/j.apsusc.2013.06.131

    Article  CAS  Google Scholar 

  18. Loehle, S., Matta, C., Minfray, C., Le Mogne, T., Iovine, R., Obara, Y., Miyamoto, A., Martin, J.M.: Mixed lubrication of steel by C18 fatty acids revisited. Part I: toward the formation of carboxylate. Tribol. Int. 82, 218–227 (2015). https://doi.org/10.1016/j.triboint.2014.10.020

    Article  CAS  Google Scholar 

  19. Sahoo, R.R., Biswas, S.K.: Frictional response of fatty acids on steel. J. Colloid Interface Sci. 333(2), 707–718 (2009). https://doi.org/10.1016/j.jcis.2009.01.046

    Article  CAS  Google Scholar 

  20. Allara, D.L., Nuzzo, R.G.: Spontaneously organized molecular assemblies.1. Formation, dynamics, and physical-properties of normal-alkanoic acids adsorbed from solution on an oxidized aluminum surface. Langmuir 1(1), 45–52 (1985). https://doi.org/10.1021/la00061a007

    Article  CAS  Google Scholar 

  21. Hirayama, T., Kawamura, R., Fujino, K., Matsuoka, T., Komiya, H., Onishi, H.: Cross-sectional imaging of boundary lubrication layer formed by fatty acid by means of frequency-modulation atomic force microscopy. Langmuir 33(40), 10492–10500 (2017). https://doi.org/10.1021/acs.langmuir.7b02528

    Article  CAS  Google Scholar 

  22. Bowden, F.P., Leben, L.: The friction of lubricated metals. Philos. Trans. R. Soc. Lond. A 239(799), 1–27 (1940). https://doi.org/10.1098/rsta.1940.0007

    Article  Google Scholar 

  23. Loehle, S.: Understanding of adsorption mechanism and tribological behaviours of C18 fatty acids on iron-based surfaces: a molecular simulation approach. PhD thesis, Ecole Centrale de Lyon (2014)

  24. Albertson, C.E.: The mechanisms of anti-squawk additive behavior in automatic transmission fluids. ASLE Trans. 6, 300–315 (1963)

    Article  Google Scholar 

  25. Campen, S., Green, J.H., Lamb, G.D., Spikes, H.A.: In situ study of model organic friction modifiers using liquid cell AFM; saturated and mono-unsaturated carboxylic acids. Tribol. Lett. 57(2), 18 (2015)

    Article  Google Scholar 

  26. Campen, S.: Fundamentals of organic friction modifier behaviour. PhD thesis, Imperial College (2012)

  27. Jahanmir, S., Beltzer, M.: Effect of additive molecular-structure on friction coefficient and adsorption. J. Tribol. Trans. Asme 108(1), 109–116 (1986). https://doi.org/10.1115/1.3261129

    Article  CAS  Google Scholar 

  28. Prutton, C.F., Frey, D.R., Turnbull, D., Dlouhy, G.: Corrosion of metals by organic acids in hydrocarbon solvents. Ind. Eng. Chem. 37(1), 90–100 (1945). https://doi.org/10.1021/ie50421a020

    Article  CAS  Google Scholar 

  29. Schick, J.W., Kaminski, J.M: Lubricant composition for reduction of fuel consumption in internal combustion engines. United States of America Patent 4304678 (1978)

  30. Evans, K.O., Biresaw, G.: Quartz crystal microbalance investigation of the structure of adsorbed soybean oil and methyl oleate onto steel surface. Thin Solid Films 519(2), 900–905 (2010). https://doi.org/10.1016/j.tsf.2010.08.134

    Article  CAS  Google Scholar 

  31. Moon, W.-S., Lee, J.-H.: Frictional characteristics of the lubricants formulated with non-conventional base stocks. J. Korean Soc. Tribol. Lubr. Eng. 11(5), 144–149 (1995)

    Google Scholar 

  32. Nalam, P.C., Pham, A., Castillo, R.V., Espinosa-Marzal, R.M.: Adsorption behavior and nanotribology of amine-based friction modifiers on steel surfaces. J. Phys. Chem. C 123(22), 13672–13680 (2019). https://doi.org/10.1021/acs.jpcc.9b02097

    Article  CAS  Google Scholar 

  33. Butt, H.J., Jaschke, M.: Calculation of thermal noise in atomic-force microscopy. Nanotechnology 6(1), 1–7 (1995). https://doi.org/10.1088/0957-4484/6/1/001

    Article  Google Scholar 

  34. Oliver, W.C., Pharr, G.M.: An improved technique for determining hardness and elastic-modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7(6), 1564–1583 (1992). https://doi.org/10.1557/Jmr.1992.1564

    Article  CAS  Google Scholar 

  35. Ogletree, D.F., Carpick, R.W., Salmeron, M.: Calibration of frictional forces in atomic force microscopy. Rev. Sci. Instrum. 67(9), 3298–3306 (1996). https://doi.org/10.1063/1.1147411

    Article  CAS  Google Scholar 

  36. Custer, G.S., Xu, H., Matysiak, S., Das, P.: How hydrophobic hydration destabilizes surfactant micelles at low temperature: a coarse-grained simulation study. Langmuir 34(42), 12590–12599 (2018). https://doi.org/10.1021/acs.langmuir.8b01994

    Article  CAS  Google Scholar 

  37. Dixon, M.C.: Quartz crystal microbalance with dissipation monitoring: enabling real-time characterization of biological materials and their interactions. J. Biomol. Tech. 19(3), 151–158 (2008)

    Google Scholar 

  38. Keller, C.A., Kasemo, B.: Surface specific kinetics of lipid vesicle adsorption measured with a quartz crystal microbalance. Biophys. J. 75(3), 1397–1402 (1998). https://doi.org/10.1016/S0006-3495(98)74057-3

    Article  CAS  Google Scholar 

  39. Ohlsson, P.A., Tjarnhage, T., Herbai, E., Lofas, S., Puu, G.: Liposome and proteoliposome fusion onto solid substrates, studied using atomic-force microscopy, quartz-crystal microbalance and surface-plasmon resonance—biological-activities of incorporated components. Bioelectrochem. Bioenerg. 38(1), 137–148 (1995). https://doi.org/10.1016/0302-4598(95)01821-U

    Article  CAS  Google Scholar 

  40. SK Lubricants. (Safety Data Sheet: Yubase 4 plus.). https://www.yubase.com/eng/product/pr_certifications_01msds.asp. Accessed 29 Nov 2019

  41. Sirbu, F., Dragoescu, D., Shchamialiou, A., Khasanshin, T.: Densities, speeds of sound, refractive indices, viscosities and their related thermodynamic properties for n-hexadecane plus two aromatic hydrocarbons binary mixtures at temperatures from 298.15 to 318.15 K. J. Chem. Thermodyn. 128, 383–393 (2019). https://doi.org/10.1016/j.jct.2018.08.036

    Article  CAS  Google Scholar 

  42. Rodahl, M., Hook, F., Fredriksson, C., Keller, C.A., Krozer, A., Brzezinski, P., Voinova, M., Kasemo, B.: Simultaneous frequency and dissipation factor QCM measurements of biomolecular adsorption and cell adhesion. Faraday Discuss 107(107), 229–246 (1997). https://doi.org/10.1039/a703137h

    Article  CAS  Google Scholar 

  43. Sauerbrey, G.: Verwendung Von Schwingquarzen Zur Wagung Dunner Schichten Und Zur Mikrowagung. Zeitschrift Fur Physik 155(2), 206–222 (1959). https://doi.org/10.1007/Bf01337937

    Article  CAS  Google Scholar 

  44. Voinova, M.V., Rodahl, M., Jonson, M., Kasemo, B.: Viscoelastic acoustic response of layered polymer films at fluid-solid interfaces: continuum mechanics approach. Physica Scripta 59(5), 391–396 (1999). https://doi.org/10.1238/Physica.Regular.059a00391

    Article  CAS  Google Scholar 

  45. Konishi, M., Washizu, H.: Understanding the effect of the base oil on the physical adsorption process of organic additives using molecular using molecular dynamics. Tribol. Int. (2019). https://doi.org/10.1016/j.triboint.2019.01.027

    Article  Google Scholar 

  46. Wheeler, D.H., Potente, D., Wittcoff, H.: Adsorption of dimer, trimer, stearic, oleic, linoleic, nonanoic and azelaic acids on ferric oxide. J. Am. Oil Chem. Soc. 48(3), 125–128 (1971). https://doi.org/10.1007/Bf02545734

    Article  CAS  Google Scholar 

  47. Liu, Y., Shen, L.: From Langmuir kinetics to first- and second-order rate equations for adsorption. Langmuir 24(20), 11625–11630 (2008). https://doi.org/10.1021/la801839b

    Article  CAS  Google Scholar 

  48. Lundgren, S.M., Persson, K., Mueller, G., Kronberg, B., Clarke, J., Chtaib, M., Claesson, P.M.: Unsaturated fatty acids in alkane solution: adsorption to steel surfaces. Langmuir 23(21), 10598–10602 (2007). https://doi.org/10.1021/la700909v

    Article  CAS  Google Scholar 

  49. Ruths, M., Israelachvili, J.N.: Surface forces and nanorheology of molecularly thin films. Nanotribol. Nanomech. 2, 107–202 (2011). https://doi.org/10.1007/978-3-642-15263-4_13

    Article  Google Scholar 

  50. Campen, S., Green, J., Lamb, G., Atkinson, D., Spikes, H.: On the increase in boundary friction with sliding speed. Tribol. Lett. 48(2), 237–248 (2012). https://doi.org/10.1007/s11249-012-0019-4

    Article  CAS  Google Scholar 

  51. Lundgren, S.M.: Ruths, M, Danerlov, K: Effects of unsaturation on film structure and friction of fatty acids in a model. J. Colloid Interface Sci. 326, 530–536 (2008)

    Article  CAS  Google Scholar 

  52. Ruths, M., Lundgren, S., Danerlov, K., Persson, K.: Friction of fatty acids in nanometer-sized contacts of different adhesive strength. Langmuir 24(4), 1509–1516 (2008). https://doi.org/10.1021/la7023633

    Article  CAS  Google Scholar 

  53. Loehle, S., Matta, C., Minfray, C., Le Mogne, T., Iovine, R., Obara, Y., Miyamoto, A., Martin, J.M.: Mixed lubrication of steel by C18 fatty acids revisited. Part II: influence of some key parameters. Tribol. Int. 94, 207–216 (2016). https://doi.org/10.1016/j.triboint.2015.08.036

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This project was supported by TOTAL MS under TOTAL-UIUC collaboration (Research agreement U15-012 PC15-039). The authors gratefully acknowledge Benoît Thiébaut and Sophie Loehle at Total M&S, Solaize Research Center (CRES), France for the useful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rosa M. Espinosa-Marzal.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 67340 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zachariah, Z., Nalam, P.C., Ravindra, A. et al. Correlation Between the Adsorption and the Nanotribological Performance of Fatty Acid-Based Organic Friction Modifiers on Stainless Steel. Tribol Lett 68, 11 (2020). https://doi.org/10.1007/s11249-019-1250-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11249-019-1250-z

Keywords

Navigation